

Sales Program Rail

Edition 1/15 valid from 08/2015

Power. Passion. Partnership.

- 02 Contents
- 04 Certified quality
- 06 General specifications
- 07 Engine designation
- 08 Selection Guideline/Product portfolio
 - PowerPacks® for railcars, underfloor installation 315 kW 700 kW
 - Diesel engines for push-pull trains and locomotives $850\;\text{kW}$ $3300\;\text{kW}$
- 10 Applications
- 28 References of Diesel engines and PowerPacks® in railcars/push-pull trains and locomotives

- 30 References of Diesel engines and PowerPacks® in special-purpose rail vehicles
- 32 Repowering
- 34 Automation
 - All products and benefits at a glance
 - SAM The reliable partner for your PowerPack®
 - Powerline for Series 1600 and Series 4000
 - CaPoS powerline
 - CaPoS smart edition
- 48 After Sales MTU ValueCare
- 54 Exhaust emissions

Exhaust emission legislation for rail application

59 Conversion table

MTU: Certified quality.

MTU is the core brand of Rolls-Royce Power Systems AG, which is a world-leading provider of high- and medium-speed diesel and gas engines, complete drive systems, distributed energy systems and fuel injection systems for the most demanding requirements.

The development, production and maintenance of diesel traction systems for railway trains are among MTU's core capabilities – and have been for nearly 100 years. As long ago as 1924, we were developing and manufacturing production engines for scheduled-service trains. In 1933, our diesel engines provided the motive power for the legendary "Fliegende Hamburger", the first high-speed railcar. And from the early Fifties until today, we supplied more than 5,500 diesel engines and PowerPacks® to the Deutsche Bundesbahn, thereby playing a major part in its full-scale program of conversion to diesel power. The extensive experience and unique specialist knowledge gained from that history and tradition are the basis of our comprehensive expertise in system engineering.

We are among today's leading providers of traction unit technology for railway applications. Locomotive and railcar producers all over the world place their trust in us as system suppliers. We and our partners are developing today the technologies that will drive us tomorrow. And that simply means that we offer the rail operator more:

more performance, more efficiency – and more dependability.

Quality also is our passion:

We are the first diesel engine manufacturer meeting the International Railway Industry Standard - IRIS.

1 IRIS
4 UIC
2 ISO 9001
5 MTU Friedrichshafen is a Q1 supplier to the Deutsche Bahn AG

4 | Rail | Sales Program | Rail | 5 | Sales Program | 7 | Sales

General specifications

Explanation of the engine designation

Four-stroke diesel engine for traction

- > Direct injection
- > Liquid-cooled
- > V or In-line configuration
- > Suitable for mechanical, hydrodynamic, hydrostatic and electric power transmission

Power Definition

All power ratings are service standard power in accordance with

UIC specifications.

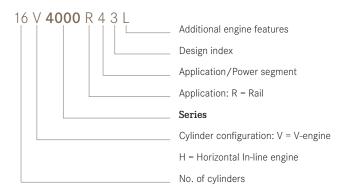
Ambient air pressure: 1000 mbar Height above sea level: 100 m Intake air temperature: 25 °C Charge-air coolant temp.: 45 °C

Fuel consumption in accordance with DIN/ISO 3046

Exhaust emission standards:

EU = EU Nonroad Directive 97/68 EC (as amended by 2010/26/EC)

EPA = US Regulation 40 CFR 9,85

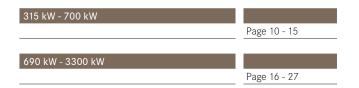

UIC = International Railway Association

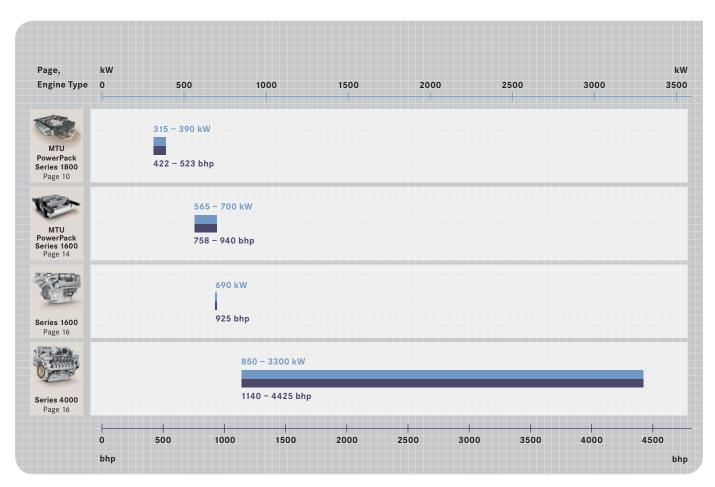
Please note, specifications are subject to change without further notice. All dimensions are approximate, more detailed information is included within installation drawings.

For further information on MTU Rail products please contact your mtu distributor or visit: www.mtu-online.com

Series 1800, 1600, 4000

Example:


Additional engine features	
Power uprated	L
Speed/power reduced	R
PowerPack-aggregat	Р


6 | Rail | Sales Program | Rail | 7 | Sales Program | 7 | Sales Program | Rail | 7 | Sales Program | 7

MTU PowerPacks® and Engines

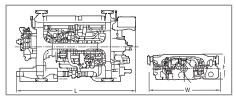
All engines at a glance.

Railcars
PowerPacks® for railcars - Underfloor installation
Push-pull trains/locomotives

8 | Rail | Sales Program | Rail | 9 | Sales Program | 8 | Sales

PowerPacks® for railcars Underfloor installation

315 kW - 390 kW (422 bhp - 523 bhp)


- > For underfloor installation
- > Horizontally mounted inline engines

PowerPack® Model **Rated Power** kW (bhp) 335 (449) 315 (422) Speed 1800 1800 rpm **Exhaust Emissions** EU Stage IIIA EU Stage IIIA compl./ EPA compl./ EPA Tier3 compl. Tier3 compl. **Fuel Consumption** at Rated Power g/kWh 216 214 I/h (gal/h) 82.0 (21.7) 86.4 (22.8) at Best Point 198 g/kWh 198 Drive systems1) DM/DH/DE DM/DH/DE PowerPack® - Dimensions & Masses Length (L)2) 2600 - 3600 2600 - 3600 (102.4 - 141.7) (102.4 - 141.7) (in) Width (W)2) 2100 - 2800 2100 - 2800 mm (in) (82.7 - 110.2)(82.7 - 110.2)Height (H)2) 770 - 850 770 - 850 mm (30.3 - 33.5)(in) (30.3 - 33.5)Mass, dry2) 2900 - 3600 2900 - 3600 kg (lbs) (6393 - 7936)(6393 - 7936)3050 - 3900 Mass, wet2) kg 3050 - 3900 (lbs) (6724 - 8598)(6724 - 8598)**Engine Main Data** No. of Cylinders/Arrangement 6/inline 6/inline Bore / Stroke mm 128/166 128/166 (5.0/6.5)(5.0/6.5)(in) Displacement/cyl. I (cu in) 2.13 (130) 2.13 (130) Displacement, total I (cu in) 12.8 (781) 12.8 (781)

Further variations on demand

Dimensions:

PowerPacks® with standard equipment

6H1800R83P	6H1800R84P	
360 (483)	390 (523)	
1800	1800	
EU Stage IIIA	EU Stage IIIA	
compl./EPA	compl./EPA	
Tier 3 compl.	Tier 3 compl.	
218	210	
94.6 (25.0)	98.7 (26.1)	
198	198	
DM/DH/DE	DM/DH/DE	
2600 - 3600	2600 - 3600	
(102.4 - 141.7)	(102.4 - 141.7)	
2100 - 2800	2100 - 2800	
(82.7 - 110.2)	(82.7 - 110.2)	
770 - 850	770 - 850	
(30.3 - 33.5)	(30.3 - 33.5)	
2900 - 3600	2900 - 3600	
(6393 - 7936)	(6393 - 7936)	
3050 - 3900	3050 - 3900	
(6724 - 8598)	(6724 - 8598)	
6/inline	6/inline	
128/166	128/166	
(5.0/6.5)	(5.0/6.5)	
2.13 (130)	2.13 (130)	
12.8 (781)	12.8 (781)	

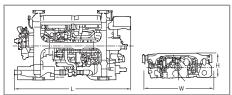
¹⁾ Drive systems: DM = diesel mechanical; DH = diesel hydraulic; DE = diesel electrical

10 | Rail | Sales Program

²⁾ depending on scope of supply

PowerPacks® for railcars Underfloor installation

315 kW - 390 kW (422 bhp - 523 bhp)


- > For underfloor installation
- > Horizontally mounted inline engines

PowerPack® Model		6H1800R75P	6H1800R75LP
Rated Power	kW (bhp)	315 (422)	335 (449)
Speed	rpm	1800	1800
Exhaust Emissions		EU Stage IIIB	EU Stage IIIB
Fuel Consumption			
at Rated Power	g/kWh	200	199
	I/h (gal/h)	75.53 (19.95)	80.03 (21.14)
at Best Point	g/kWh	183	183
Drive systems ¹⁾		DM/DH/DE	DM/DH/DE
PowerPack® - Dimens	sions & Masses		
Length (L) ²⁾	mm	2600 - 3600	2600 - 3600
	(in)	(102.4 - 141.7)	(102.4 - 141.7)
Width (W) ²⁾	mm	2100 - 2800	2100 - 2800
	(in)	(82.7 - 110.2)	(82.7 - 110.2)
Height (H) ²⁾	mm	770 - 850	770 - 850
	(in)	(30.3 - 33.5)	(30.3 - 33.5)
Mass, dry ²⁾	kg	2900 - 3600	2900 - 3600
	(lbs)	(6393 - 7936)	(6393 - 7936)
Mass, wet ²⁾	kg	3050 - 3900	3050 - 3900
	(lbs)	(6724 - 8598)	(6724 - 8598)
Engine Main Data			
No. of Cylinders/Arrai	ngement	6/inline	6/inline
Bore / Stroke	mm (in)	128/166	128/166
		(5.0/6.5)	(5.0/6.5)
Displacement/cyl.	I (cu in)	2.13 (130)	2.13 (130)
Displacement, total	I (cu in)	12.8 (781)	12.8 (781)

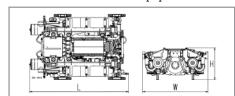
Further variations on demand

Dimensions:

PowerPacks® with standard equipment

6H1800R85P	6H1800R85LP	
360 (483)	390 (523)	
1800	1800	
EU Stage IIIB	EU Stage IIIB	
202	208	
87.30 (23.06)	97.33 (25.71)	
183	183	
DM/DH/DE	DM/DH/DE	
2600 - 3600	2600 - 3600	
(102.4 - 141.7)	(102.4 - 141.7)	
2100 - 2800	2100 - 2800	
(82.7 - 110.2)	(82.7 - 110.2)	
770 - 850	770 - 850	
(30.3 - 33.5)	(30.3 - 33.5)	
2900 - 3600	2900 - 3600	
(6393 - 7936)	(6393 - 7936)	
3050 - 3900	3050 - 3900	
(6724 - 8598)	(6724 - 8598)	
6/inline	6/inline	
128/166	128/166	
(5.0/6.5)	(5.0/6.5)	
2.13 (130)	2.13 (130)	
12.8 (781)	12.8 (781)	

 $^{^{\}rm I)}$ Drive systems: DM = diesel mechanical; DH = diesel hydraulic; DE = diesel electrical $^{\rm 2)}$ depending on scope of supply


PowerPacks® for railcars Underfloor installation

565 kW - 700 kW (758 bhp - 938 bhp)

> For underfloor installation

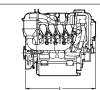
Dimensions and Masses: PowerPacks® with standard equipment

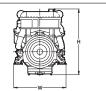
PowerPack® Model		12V1600R70P	12V1600R70LP
Rated Power	kW (bhp)	565 (758)	625 (838)
Speed	rpm	2100	2100
Exhaust Emissions		EU Stage IIIB	EU Stage IIIB
Fuel Consumption			
at Rated Power	g/kWh	207	207
	l/h (gal/h)	127.98 (33.8)	139.31 (36.8)
at Best Point	g/kWh	189	189
Drive systems ¹⁾		DM/DH/DE	DM/DH/DE
PowerPack® - Dimens	ions & Masses		
Length (L) ²⁾	mm	4000 - 5200	4000 - 5200
	(in)	(157.5 - 204.7)	(157.5 - 204.7)
Width (W) ²⁾	mm	2100 - 2800	2100 - 2800
	(in)	(82.7 - 110.2)	(82.7 - 110.2)
Height (H) ²⁾	mm	850 - 900	850 - 900
	(in)	(31.5 - 35.4)	(31.5 - 35.4)
Mass, dry ²⁾	kg	5000 - 6500	5000 - 6500
	(lbs)	(11023 - 14330)	(11023 - 14330)
Mass, wet ²⁾	kg	5200 - 6700	5200 - 6700
	(lbs)	(11464 - 14770)	(11464 - 14770)
Engine Main Data			
No. of Cylinders/Arrar	ngement	12	12
Bore / Stroke	mm (in)	122/150	122/150
		(4.8/5.9)	(4.8/5.9)
Displacement/cyl.	I (cu in)	1.75 (106.8)	1.75 (106.8)
Displacement, total	I (cu in)	21.0 (1281.5)	21.0 (1281.5)

Further variations on demand

1) Drive systems: DM = diesel mechanical; DH = diesel hydraulic; DE = diesel electrical

12V1600R80P	12V1600R80LP
660 (885)	700 (938)
1900	1900
EU Stage IIIB	EU Stage IIIB
199	200
155.06 (40.96)	166.14 (43.88)
195	195
DE	DE
4000 - 5200	4000 - 5200
(157.5 - 204.7)	(157.5 - 204.7)
2100 - 2800	2100 - 2800
(82.7 - 110.2)	(82.7 - 110.2)
850 - 900	850 - 900
(31.5 - 35.4)	(131.5 - 35.4)
5000 - 6500	5000 - 6500
(11023 - 14330)	(11023 - 14330)
5200 - 6700	5200 - 6700
(11464 - 14770)	(11464 - 14770)
12	12
122/150	122/150
(4.8/5.9)	(4.8/5.9)
1.75 (106.8)	1.75 (106.8)
21.0 (1281.5)	21.0 (1281.5)


²⁾ depending on scope of supply


for push-pull trains and locomotives

690 kW - 1200 kW (925 bhp - 1609 bhp)

Dimensions:

Engines with standard equipment

- > For new locomotives or repowering
- > Economical space requirements

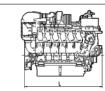
Engine Model		12V 1600R50	8V4000R41R
Rated Power	kW (bhp)	690 (925)	850 (1139)
Speed	rpm	1800	1500
Exhaust Emissions		EU Stage IIIB	UIC II
Fuel Consumption			
at Rated Power	g/kWh	197	204
	I/h (gal/h)	164 (43.3)	208.9 (55.2)
at Best Point	g/kWh	193	200
Engine – Dimensions	and Masses		
Length (L)	mm (in)	1850 (72.8)	1915 (75.4)
Width (W)	mm (in)	1200 (47.2)	1380 (54.3)
Height (H)	mm (in)	1200 (47.2)	1800 (70.9)
Mass, dry	kg (lbs)	2300 (5071)	4700 (10362)
Mass, wet	kg (lbs)	2500 (5512)	5020 (11067)
Engine Main Data			
No. of Cylinders		12	8
Bore / Stroke	mm (in)	122/150	165/190
		(4.8/5.9)	(6.5/7.5)
Displacement/cyl.	I (cu in)	1.75 (106.8)	4.06 (248)
Displacement, total	I (cu in)	21.0 (1281.5)	32.5 (1983)

¹⁾ EU IIIA type approved, EU IIIA certificate available

8V4000R43	8V4000R43L	
1000 (1341)	1200 (1609)	
1800	1800	
EU Stage IIIA	EU Stage IIIA	
compliant1)/	compliant1)/	
UIC IIIA	UIC IIIA	
206	206	
248.2 (65.2)	297.8 (78.7)	
194	194	
2000 (78.7)	2000 (78.7)	
1565 (61.6)	1565 (61.6)	
1860 (79.0)	1860 (79.0)	
5220 (11508)	5220 (11508)	
5570 (12280)	5570 (12280)	
8	8	
170/210	170/210	
(6.7/8.3)	(6.7/8.3)	
4.77 (291)	4.77 (291)	
38.2 (2331)	38.2 (2331)	

for push-pull trains and locomotives

1380 kW - 1800 kW (1851 bhp - 2414 bhp)



- > Well differentiated choice of engines spanning wide range of power outputs
- > High power-to-weight ratios for lightweight trains

Engine Model		12V4000R41R	12V4000R43
Rated Power	kW (bhp)	1380 (1851)	1500 (2012)
Speed	rpm	1500	1800
Exhaust Emissions		UIC II	EU Stage IIIA
			compliant1)/
			UIC IIIA
Fuel Consumption			
at Rated Power	g/kWh	195	205
	I/h (gal/h)	324.2 (85.7)	370.5 (97.9)
at Best Point	g/kWh	193	192
Engine - Dimensions	and Masses		
Length (L)	mm (in)	2405 (94.7)	2386 (93.9)
Width (W)	mm (in)	1390 (54.7)	1562 (61.5)
Height (H)	mm (in)	1795 (70.7)	2015 (79.3)
Mass, dry	kg (lbs)	6190 (13646)	6800 (14991)
Mass, wet	kg (lbs)	6630 (14616)	7280 (16049)
Engine Main Data			
No. of Cylinders		12	12
Bore / Stroke	mm (in)	165/190	170/210
		(6.5/7.5)	(6.7/8.3)
Displacement/cyl.	I (cu in)	4.06 (248)	4.77 (291)
Displacement, total	I (cu in)	48.7 (2978)	57.2 (3491)

¹⁾ EU IIIA type approved, EU IIIA certificate available

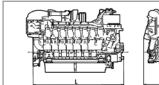
Dimensions: Engines with standard equipment

12V4000R41L	12V4000R43L
1650 (2212)	1800 (2414)
1860	1800
UIC II	EU Stage IIIA
	compliant1)/
	UIC IIIA
206	210
409.5 (108.2)	455.4 (120.3)
198	190
2405 (94.7)	2386 (93.9)
1390 (54.7)	1562 (61.5)
1795 (70.7)	2015 (79.3)
6190 (13646)	6800 (14991)
6630 (14616)	7280 (16049)
12	12
165/190	170/210
(6.5/7.5)	(6.7/8.3)
4.06 (248)	4.77 (291)

57.2 (3491)

48.7 (2978)

for push-pull trains and locomotives

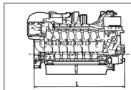

- > Well differentiated choice of engines spanning wide range of power outputs
- > High power-to-weight ratios for lightweight trains
- > Meeting emissions regulations EU Stage IIIB

Engine Model		12V4000R64	12V4000R84
Rated Power	kW (bhp)	1500 (2012)	1800 (2414)
Speed	rpm	1800	1800
Exhaust Emissions		EU Stage IIIB	EU Stage IIIB
Fuel Consumption			
at Rated Power	g/kWh	203	202
	I/h (gal/h)	367.4 (97.1)	436.5 (115.3)
at Best Point	g/kWh	193	193
Engine - Dimensions	and Masses		
Length (L)	mm (in)	2670 (105.1)	2670 (105.1)
Width (W)	mm (in)	1696 (66.8)	1696 (66.8)
Height (H)	mm (in)	2001 (78.8)	2001 (78.8)
Mass, dry	kg (lbs)	7700 (16979)	7700 (16979)
Mass, wet	kg (lbs)	8230 (18147)	8230 (18147)
Engine Main Data			
No. of Cylinders		12	12
Bore / Stroke	mm (in)	170/210	170/210
		(6.7/8.3)	(6.7/8.3)
Displacement/cyl.	I (cu in)	4.77 (291)	4.77 (291)
Displacement, total	I (cu in)	57.2 (3491)	57.2 (3491)

Series 4000-04 engines portfolio meeting EU Stage IIIB will be completed with 8V models. For further information please contact your MTU distributor.

Dimensions:

Engines with standard equipment


12V4000R54
1800 (2414)
1800
EPA Tier 3
Carb ULEL comp
199
430.0 (113.5)
on request
2670 (105.1)
1696 (66.8)
2001 (78.8)
7700 (16979)
8230 (18147)
12
170/210
(6.7/8.3)
4.77 (291)
57.2 (3491)

for push-pull trains and locomotives

1700 kW - 2400 kW (2280 bhp - 3218 bhp)

Dimensions:

Engines with standard equipment

- > Cutting-edge technology with built-in potential
- > Uniquely low emissions and consumption
- > Market leader in its class for European diesel locomotives

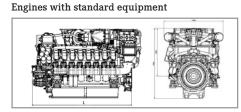
Engine Model		16V4000R41R	16V4000R43R	
Rated Power	kW (bhp)	1700 (2280)	2000 (2682)	
Speed	rpm	1500	1800	
Exhaust Emissions		UIC II	EU Stage IIIA	
			compliant1)/	
			UIC IIIA	
Fuel Consumption				
at Rated Power	g/kWh	198	207	
	I/h (gal/h)	405.5 (107.1)	498.8 (131.8)	
at Best Point	g/kWh	198	196	
Engine – Dimensions	and Masses			
Length (L)	mm (in)	2875 (113.2)	2865 (112.8)	
Width (W)	mm (in)	1405 (55.3)	1562 (61.5)	
Height (H)	mm (in)	1815 (71.5)	2015 (79.3)	
Mass, dry	kg (lbs)	7400 (16314)	8175 (18023)	
Mass, wet	kg (lbs)	7880 (17373)	8770 (19334)	
Engine Main Data				
No. of Cylinders		16	16	
Bore / Stroke	mm (in)	165/190	170/210	
		(6.5/7.5)	(6.7/8.3)	
Displacement/cyl.	I (cu in)	4.06 (248)	4.77 (291)	
Displacement, total	I (cu in)	65 (3967)	76.3 (4656)	

¹⁾ EU IIIA type approved, EU IIIA certificate available

16V4000R43	16V4000R43L
2200 (2950)	2400 (3218)
1800	1800
EU Stage IIIA	EU Stage IIIA
compliant1)/	compliant1)/
UIC IIIA	UIC IIIA
206	205
546.0 (144.3)	592.8 (156.6)
196	196
2865 (112.8)	2865 (112.8)
1562 (61.5)	1562 (61.5)
2015 (79.3)	2015 (79.3)
8175 (18023)	8175 (18023)
8770 (19334)	8770 (19334)
16	16
170/210	170/210
(6.7/8.3)	(6.7/8.3)
4.77 (291)	4.77 (291)
76.3 (4656)	76.3 (4656)

for push-pull trains and locomotives

2000 kW - 2400 kW (2682 bhp - 3218 bhp)



- > Cutting-edge technology with built-in potential
- > Uniquely low emissions and low consumption
- > Meeting emissions regulations EU Stage IIIB

Engine Model		16V4000R64	16V4000R74	
Rated Power	kW (bhp)	2000 (2682)	2200 (2950)	
Speed	rpm	1800	1800	
Exhaust Emissions		EU Stage IIIB	EU Stage IIIB	
Fuel Consumption				
at Rated Power	g/kWh	201	202	
	l/h (gal/h)	482.6 (127.5)	533.5 (140.94)	
at Best Point	g/kWh	190	190	
Engine - Dimensions	and Masses			
Length (L)	mm (in)	3140 (123.6)	3140 (123.6)	
Width (W)	mm (in)	1696 (66.8)	1696 (66.8)	
Height (H)	mm (in)	2001 (78.8)	2001 (78.8)	
Mass, dry	kg (lbs)	9200 (20282)	9200 (20282)	
Mass, wet	kg (lbs)	9773 (21546)	9773 (21546)	
Engine Main Data				
No. of Cylinders		16	16	
Bore / Stroke	mm (in)	170/210	170/210	
		(6.7/8.3)	(6.7/8.3)	
Displacement/cyl.	I (cu in)	4.77 (291)	4.77 (291)	
Displacement, total	I (cu in)	76.3 (4666)	76.3 (4666)	

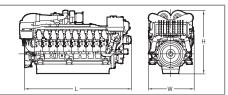
Series 4000-04 engines portfolio meeting EU Stage IIIB will be completed with 8V models. For further information please contact your MTU distributor.

Dimensions:

16V4000R84	16V4000R54
2400 (3218)	2400 (3218)
1800	1800
EU Stage IIIB	EPA Tier 3
	Carb ULEL compl.
199	199
573.35 (151.46)	592.8 (156.6)
190	on request
3140 (123.6)	3140 (123.6)
1696 (66.8)	1696 (66.8)
2001 (78.8)	2001 (78.8)
9200 (20282)	9200 (20282)
9773 (21546)	9773 (21546)
16	16
170/210	170/210
(6.7/8.3)	(6.7/8.3)
4.77 (291)	4.77 (291)
76.3 (4666)	76.3 (4666)

for push-pull trains and locomotives

2700 kW - 3300 kW (3621 bhp - 4425 bhp)



- > Outstanding power density. Unbeaten power-to-weight ratio
- > Up to 3,300 kW for 4-axle locomotives and 6-axle locomotives

20V4000R43 20V4000R63R **Engine Model** Rated Power kW (bhp) 2700 (3621) 2700 (3621) Speed 1800 1800 rpm **Exhaust Emissions** EU Stage IIIA EU Stage IIIA compliant1)/ compliant/ UIC IIIA UIC IIIA **Fuel Consumption** at Rated Power g/kWh 208 204 I/h (gal/h) 676.6 (178.8) 664 (175) at Best Point 194 g/kWh 194 Engine - Dimensions and Masses Length (L) mm (in) 3335 (131.5) 3335 (131.5) Width (W) mm (in) 1562 (61.5) 1562 (61.5) Height (H) mm (in) 2015 (79.3) 2015 (79.3) Mass, dry kg (lbs) 9850 (21716) 10400 (22932) Mass, wet 11070 (24410) kg (lbs) 10520 (23193) **Engine Main Data** No. of Cylinders 20 20 Bore / Stroke 170/210 170/210 mm (in) (6.7/8.3)(6.7/8.3)4.77 (291) Displacement/cyl. I (cu in) 4.77 (291) Displacement, total I (cu in) 95.4 (5822) 95.4 (5822)

Dimensions:

Engines with standard equipment

20V4000R43L	20V4000R63	20V4000R63L	
3000 (4023)	3000 (4023)	3300 (4425)	
1800	1800	1800	
EU Stage IIIA	EU Stage IIIA	EU Stage IIIA	
compliant1)/	compliant/	compliant/	
UIC IIIA	UIC IIIA	UIC IIIA	
210	206	206	
759.0 (200.5)	745 (197)	819 (216)	
194	197	195	
3335 (131.5)	3335 (131.5)	3335 (131.5)	
1562 (61.5)	1562 (61.5)	1562 (61.5)	
2015 (79.3)	2015 (79.3)	2015 (79.3)	
9850 (21716)	10400 (22932)	10400 (22932)	
10520 (23193)	11070 (24410)	11070 (24410)	
20	20	20	
170/210	170/210	170/210	
(6.7/8.3)	(6.7/8.3)	(6.7/8.3)	
4.77 (291)	4.77 (291)	4.77 (291)	
95.4 (5822)	95.4 (5822)	95.4 (5822)	

¹⁾ EU IIIA type approved, EU IIIA certificate available

References

Diesel engines and PowerPacks® in railcars/push-pull trains and locomotives

High-Speed-Trains and Locomotives

Deutsche Bahn V290 1 x 1000 kW

CNR Dalian DL class 1 x 2700 kW

Siemens ER 20D "EURORUNNER" 1 x 2000 kW

PKP Cargo ST 46 1 x 1800 kW

Siemens/Alstom BB 475000 1 x 2000 kW

Railcars

Alstom Lint 41 PowerPack® 1-4 x 390 kW (depending on class)

PESA Link 2 x 390 kW

Hitachi IEP PowerPack 1-5 x 700 KW (depending on class)

Bombardier Turbo Star PowerPack® 2 x 390 kW

Rotem Class 22000 3 x 360 kW

28 | Rail | Sales Program

References

Diesel engines and PowerPacks® for special-purpose rail vehicles

- > Individual traction system solutions
- > Flexibility in design and installation

Remotecontrolled shunter

> Emissions optimized engines for tunnel operations with particle filter/ exhaust catalyst

Rotary Snow-Plow

Fire Fighting and Rescue Train

Auxiliary locomotive for tunnel operations

Railroad inspection vehicle

Further appplications with MTU system solutions are e.g.:

- Locomotives for underground railways
- Mountain railways

Grinding train

Track layer

Rail crane

Overhead line inspection railcar

Repowering with MTU Diesel engines

For economical reasons, many railway companies and locomotive operators have decided to repower older locomotives and rail cars which are in good general condition with modern diesel engines. Due to their high technical standards, MTU engines fulfill all technical criteria for repowering projects:

- > Economical alternative to new procurement
- > Reduced investment costs
- > Increased availability equal to that of a new vehicle
- > Individual solutions to suit existing system interfaces

MTU is your competent partner for a successful repowering project, we offer everything you require:

- > Active support provided by a professional engineering service during all phases of a repowering project
- > Design and realisation of the traction plant
- > Engines adaptable to existing parameters
- > Reliable and sturdy engines with low fuel and lube oil consumption rates
- > Long maintenance intervals and low life-cycle costs
- > Compact dimensions for easy installation in existing engine rooms
- > Low installation and maintenance effort
- > The accessories incorporate clearly defined interfaces and are mounted to the engine in such a manner as to be easily accessible for maintenance operations
- Excellent power-to-weight ratios permit installation of higher power ratings without exceeding permissible axle loads
- > Qualified support by the MTU Product Support organisation
- > Meet all applicable exhaust gas and noise emissions limit values

Automation systems

All products and benefits at a glance

Automation system	SAM	Powerline	CaPoS (Capacitor	CaPoS
	57		Power System)	smart edition
		Apple Control		
Components	- PowerPack Automation - MR2 - PEM	- ADEC (ECU 7/ECU 9) - MDEC (ECU 4) - PAU Engine - PAU Traction - POM	UltracapDC/DC voltage transformerConnection cable	- Ultracap
Advantages at a glance	Central interface for complete system For new-production and repowering projects	 Special rail automation system Central interface for complete system For new-production and repowering projects Certified for rail applications 		 Integral charger Standalone component Enclosure rating IP66 Maintenance-free
MTU PowerPacks® for Railcars				
Series 1800			•	•
Series 1600	-			
MTU Engines for Railcar Trainsets and Locomotives				
Series 1600		•		
Series 4000				
Page	36	38	44	46

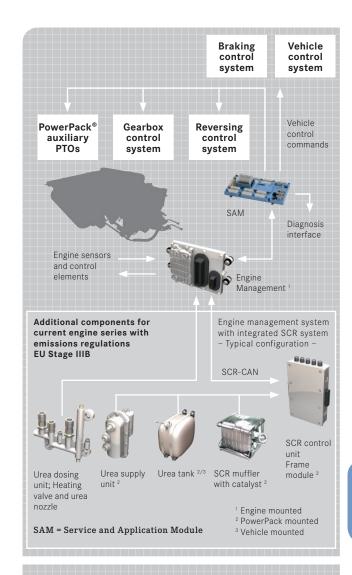
SAM – The reliable partner for your PowerPack®

The smart module.

The System PowerPack Automation (SAM) is an innovative high-end technology of MTU for rail vehicles – e.g. for rail cars. PowerPack Automation (SAM) optimizes the control, regulation and monitoring of the entire drive system. Representing a modular system, it ensures perfect adaptation of the drive system to the most complex operating conditions in rail applications.

PowerPack Automation (SAM) allows:

- > Easy integration in new or in case of retrofits existing vehicle control systems
- > Flexible adaptation to the vehicle or its components and to project-specific requirements
- > Automatic power adjustment or, if required, engine shutdown by the integrated safety system as well as all other required monitoring and safety functions
- > Traction optimization by the integrated load management (torque control) feature depending on the consumers connected (e.g. generator, compressor etc.)


Thus, the new PowerPack® generation provides

- > High power efficiency
- > Lowest fuel consumption
- > Minimum exhaust emissions which are considerably below the statutory requirements (e.g. valid EU Stage IIIA and EU Stage IIIB)
- > Flexible and standardized interface solutions

Diagnosis and maintenance

Interface to the central railcar computer system, including the drive system components.

System highlights and benefits:

- > Complete system supplied from one single source
- > Modular design
- > Optimized diagnostic function
- > Intelligent CAN bus technology
- > Fast project implementation
- > Easy integration

powerline for Series 1600 and Series 4000

powerline – MTU's automation system for train drive units – represents a step into a whole new future of technology for rail vehicles. Even with only the basic components ADEC, POM and PAU, the **powerline** automation system makes the integration of the engine into the locomotive a simple process. POM, like ADEC, is an electronic module mounted permanently to the engine. Control, regulation and monitoring are all part of the package that MTU delivers. With the help of optimized interface technology, the engine is quick and easy to install.

MDEC / ADEC engine control systems

The engine control systems

- MDEC (MTU Diesel Engine Control) for Series 4000 R41
- ADEC (Advanced Diesel Engine Control) for Series 1600, 4000 R03/R04 are systems that have been developed and produced by MTU specifically for use with the very latest high-performance diesel engine technology designed not only for full control of the Common Rail technology in the Series 4000, but above all for the management of frequent extreme loads and sudden load changes, which can be overcome effortlessly and smoothly using this system.

The most important features at a glance:

- Component mounted on and wired into the engine
- Integrated control and monitoring system
- Fuel-optimized output regulation
- Integrated safety and self-test system
- Data bus interface

ADEC - Engine Management

POM (Power Output Module) for Series 1600, 4000 R03/R04

Module with actuating function for the starter motor and alternator, with the following features:

- Component mounted on the engine
- Starter relay and other conventional power routing not required
- Optimization of start-up process; starter motor monitoring with engaging function
- Alternator function monitoring
- Line break and short circuit monitoring
- Battery voltage monitoring with start-up intervention plus status indication and error report function
- ADEC and POM linked via CAN data bus
- Fully automated start-up control with ADEC

POM - Interface Module

powerline for Series 1600 and Series 4000

powerline for new locomotives or repowering with Series 1600 and 4000

PAU Engine (Power Automation Unit)

Module for the monitoring, control and system integration of peripheral engine components, with the following features:

- Stand-alone component with (redundant) CAN open interface to vehicle control system
- Transfer of all engine-related operational data including diagnostics to the vehicle control system
- Additional monitoring and control of peripheral engine systems
 - · Coolant level monitoring
 - · Fuel pump actuation
 - · Air filter monitoring
 - · Integrated safety functions
 - · Data output for fuel consumption indicator
 - · Ethernet diagnosis interface (e.g. service laptop)
 - · Fault ring buffer
 - · Cooling fan regulation

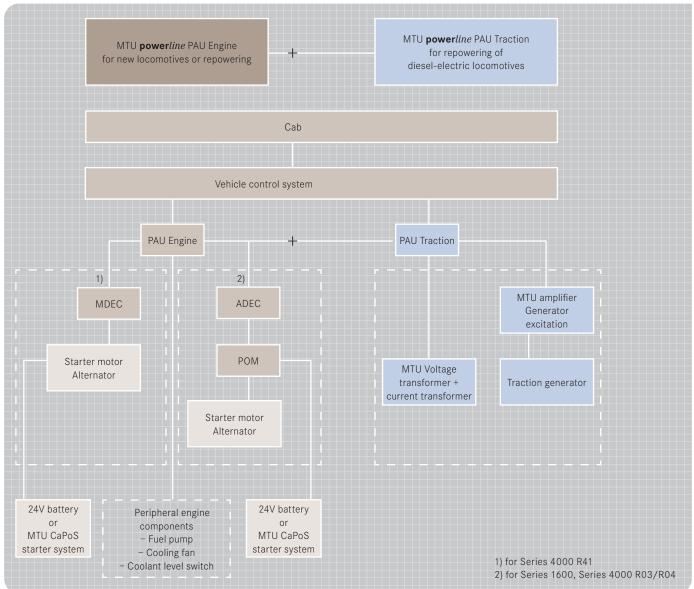
powerline additional module for repowering of diesel-electric locomotive drive systems

PAU Traction (Power Automation Unit)

Module for the monitoring, control, regulation and system integration of the traction generator and rectifier, with the following features:

- For drive systems with direct-current series-wound engines
- Optimized output regulation, configured for the diesel engine
- Generator, rectifier and vehicle engine monitoring
- Field weakening control for vehicle engine
- Wheel-slip protection
- Integrated safety functions (e.g. power shut-off)
- Ethernet interface (e.g. service laptop)
- Fault ring buffer
- Locomotive safety functions
- Specification includes current and voltage transformers plus amplifier for generator excitation

PAU - Traction



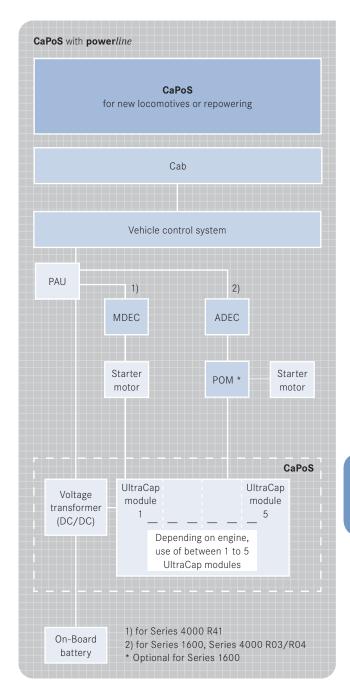
powerline for Series 1600 and Series 4000

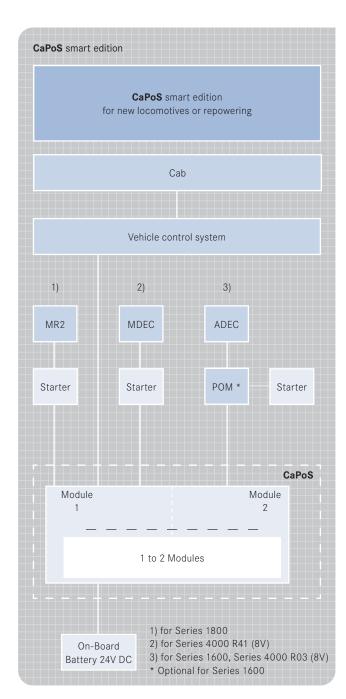
ADEC = Advanced Diesel Engine Control PAU = Power Automation Unit

MDEC = MTU Diesel Engine Control POM = Power Output Module

CaPoS – **Ca**pacitor **Power System** for Series 1600, 1800 and 4000

Innovation right from the start.


CaPoS is an innovative UltraCap voltage supply system which obviates the need for conventional starter batteries in railroad applications.


CaPoS uses capacitor technology to optimize startup behavior. The number of UltraCap modules to be used depends on the type of engine involved and its breakaway torque. CaPoS may be used autonomously or in conjunction with the **power**line automation system.

The most important features at a glance:

- Autonomous and modular construction
- Maintenance-free system
- Significant reductions in weight and volume compared with conventional starter batteries
- Optimized cold-starting properties
- Low life-cycle costs
- No voltage interruption during start-up
- On-board voltage of 16V 154V possible
- Wired-up complete system
- CAN interface with powerline

CaPoS smart edition – **Ca**pacitor **Power System** for Series 1600, 1800 and 4000

Reliable power right from the start.

CaPoS smart edition was especially developed for heavy and duty applications and provides the high energy required by the 24V DC starters during the starting sequence.

CaPoS smart edition uses capacitor technology to optimize startup behavior. The number of modules to be used depends on the type of engine involved and its breakaway torque.

The most important features at a glance:

- Autonomous and modular construction
- Maintenance-free system
- Significant reductions in weight and volume compared with conventional starter batteries
- Optimized cold-starting capabilities
- Low life-cycle costs
- No voltage interruption during start-up
- On-board voltage of 24V DC
- Integrated self-monitoring system with interface to vehicle control system
- Integrated DC-/DC converter for automatical recharging
- IP66 protection

MTU ValueCare

A valuable portfolio of products and services

Getting the most out of your MTU engines and systems is of paramount importance. That's why we offer MTU **Value**Care, a complete portfolio of products and services designed to help maximize both performance and uptime.

The MTU **Value**Care portfolio includes global support and service products through **Value**Service; genuine spare parts and top quality consumables through **Value**Spares; and remanufactured engines and service parts through **Value**Exchange. No matter where you are or what you need, we're always ready to provide valuable support through our worldwide MTU service network.

ValueService Products:

Remote Services

Identifying faults early, before they turn into unwanted complications, saves valuable service time and helps you make quick operational decisions. As a part of **Value**Service, Remote Services is a powerful diagnostic solution that links you directly to a record of the activity of your MTU engines and systems through a secure Internet connection. A telemetric device within Remote Services stores selected information and transmits it in real time or at predetermined intervals. Important engine data such as oil temperature, current location and operating hours can be conveniently retrieved for analysis, even remotely from a far-away work site. All you need is a computer with an Internet connection.

Remote Services can be ordered as an option on an MTU engine. If you already have an MTU engine, Remote Services is also available as a retrofit. The minimum duration for a Remote Services User Agreement is 2 years, after which time it's automatically extended for 6 months.

Maintenance Solutions:

- Customized Care: professional, planned maintenance solutions from MTU
- > Extended Coverage: providing coverage beyond your standard warranty on your MTU engines and systems
- > Annual Check: a yearly professional inspection of your MTU engines and systems by MTU experts

In addition, we can provide further value-added services:

- > Technical documentation
- > Training
- > RAMS LCC-Analysis

ValueSpares:

- > Genuine parts
- > Top quality consumables (lubricants, coolants, filters)

ValueExchange:

- > Remanufactured Parts
- > Remanufactured Engines
- > Remanufactured PowerPacks
- > Engine Overhaul

Series and emissions qualification

Overview of MTU engines

En	gine model	UIC II	UIC IIIA
M	TU PowerPacks [®] for Railcars		
1	Series 1800		
2	Series 1600		
	55.155		
М	TU Engines for Railcar		
Tr	ainsets, Push-Pull Trains		
ar	d Locomotives		
3	Series 1600		
4	Series 4000		
	8V/12V/16V 4000 R41		
	8V/12V/16V/20V 4000 R43 ¹⁾		
	20V 4000 R53		
	20V 4000 R63		
	12V/16V 4000 R54		
	12V/16V 4000 R64/74/84		
	121, 101 1000 101, 77, 07		

EU Stage IIIA compliant	EU Stage IIIB certified	US EPA Tier3 (line haul loco) compliant	US EPA Tier3 (line haul loco) Carb ULEL compl.	US EPA Tier 4i (NRMM) compliant
······································				

¹⁾ EU IIIA type approved, EU IIIA certificate available

Key technologies for emission reduction

MTU engine technology

	Engine model	Exhaust G	Exhaust Gas Aftertreatment		
		SCR	DPF	DOC	
	Railcar				
	Series 1800				
No.	Series 1600				
	Locomotive Series 1600				
	Series 4000				
0					

EGR	2st Turbo- charging	Advanced CR
_		

Exhaust Gas Aftertreatment

Selective Catalytic Reduction (SCR)

Diesel Particulate Filter (DPF)

Diesel Oxidation Catalyst (DOC)

Internal Emission Technology

Exhaust Gas Recirculation (EGR)

Two-Stage Turbocharging

Advanced Common Rail Fuel Injection

UIC (International Railway Association)

In its codex 624 the UIC has established emission limits for rail traction engines, which are binding for all its members.

Stage	Power P _n Speed n _n	NO _x	HC g/kWh	CO g/kWh	Partic.	Date
UIC II	P _n ≤ 560 kW	6.0	0.6	2.5	0.25	2003
	P _n ≤ 560 kW	9.5	0.8	3.0	0.25	2003
	n _n ≥ 1000 rpm					
	P _n ≤ 560 kW	9.9	0.8	3.0	0.25	2003
	$n_n \ge 1000 \text{ rpm}$					

EU - Rail 97/68/EC Locomotive propulsion engines

Stage	Power P _n	NO _x	HC	CO	Partic.	Date*
	Cylinder	g/kWh	g/kWh	g/kWh	g/kWh	
	displacem.	HC+NO _x	(g/kWh)			
IIIA	130 - 560 kW	4	.0	3.5	0.2	2007
	> 560 kW	6.0	0.5	3.5	0.25	2009
	> 2000 kW	7.4	0.4	3.5	0.2	2009
	$V_{h,z} > 5 I$					
IIIB	> 130 kW	4	.0	3.5	0.025	2012

Railcar propulsion engines

Stage	Power P _n Cylinder displacem.	NO _x g/kWh HC+NO _x	HC g/kWh (g/kWh)	CO g/kWh	Partic. g/kWh	Date*
IIIA	> 130 kW	4	.0	3.5	0.2	2006
IIIB	> 130 kW	2.0	0.19	3.5	0.025	2012

^{*} Date for placing on the market of engines, type approval one year earlier.

USA - EPA Rail Regulation 40 CFR 9, 85, et al.

On 6 May 2008 the US EPA has published the final rule "40 CFR Parts, 9, 85 et al." for locomotive engines less than 30 liters per cylinder. This law regulates the emission limit values for all rail diesel engines.

Line-haul Locomotives

Engine category	Take effect in year	PM g/bhp-hr	NO _x	HC g/bhp-hr	
Remanufactured	2008, as	0.22	8.0	1.00	
Tier 0 without	available				
separate loop	2010 required				
intaike air cooling					
Remanufactured	2008, as	0.22	7.4	0.55	
Tier 0 with	available				
separate loop	2010 required				
intaike air cooling					
Remanufactured	Remanufactured 2008, as		7.4	0.55	
Tier 1	available				
	2010 required				
Remanufactured	2008, as	0.10	5.5	0.30	
Tier 2	available				
	2013 required				
New Tier 3 2012		0.10	5.5	0.30	
New Tier 4 2015		0.03	1.3	0.14	

Switch-haul Locomotives

Take effect in year	PM g/bhp-hr	NO _x g/bhp-hr	HC g/bhp-hr
2008, as avail.	0.26	11.8	2.10
2010 required			
2008, as avail.	0.26	11.0	1.20
2010 required			
Remanufactured 2008, as avail.		8.1	0.60
2013 required			
2011	0.10	5.0	0.60
2015	0.03	1.3	0.14
	in year 2008, as avail. 2010 required 2008, as avail. 2010 required 2008, as avail. 2013 required 2011	in year g/bhp-hr 2008, as avail. 2010 required 2008, as avail. 2010 required 2008, as avail. 2013 required 2011 0.10	in year g/bhp-hr g/bhp-hr 2008, as avail. 0.26 11.8 2010 required 0.26 11.0 2010 required 0.26 11.0 2010 required 0.13 8.1 2013 required 0.10 5.0

Notes

USA - EPA Nonroad Regulation (40 CFR 89, 40 CFR 1039 and 40 CFR 1068)

Diesel engines

Power Pn	NOx	HC	CO	Particul.	Date as
kW	g/kWh	g/kWh	g/kWh	g/kWh	of model
	NOx + NI	ИНС			year
Tier 4					
Pn < 8	7.5	7.5	8.0	0.4 ^A	2008
8 ≤ Pn < 19	7.5	7.5	6.6	0.4	2008
19 ≤ Pn < 37	4.7	4.7	5.5	0.03	2013
37 ≤ Pn < 56	4.7	4.7	5.0	0.03	2013
56 ≤ Pn < 130	0.4	0.19	5.0	0.02	2015 ^B
130 ≤ Pn < 560	0.4	0.19	3.5	0.02	2014 ^c
Pn > 560	3.5	0.19	3.5	0.04	2015
Tier 4 Genset					
Pn > 560	0.67	0.19	3.5	0.03	2015

- A hand-startable, air cooled direct injection engines may be certified to Tier 2 standards through 2009 and to an optimal PM standard of 0.6 g/kWh starting in 2010
- B PM/CO: full compliance from 2012; NOx/HC: Option 1 (if banked Tier 2 credits used) 50% engines must comply in 2012-2013; Option 2 (if no Tier 2 credits claimed) 25% engines must comply in 2012-2014, with full compliance from 31 December 2014
- C PM/CO: full compliance from 2011; NOx/HC: 50% engines must comply in 2011-2013

Conversion Table

-	

Application sales programs:

- Marine
- PowerGen
- C&I, Agricultural, Mining
- Oil & Gas
- Onsite Energy

1 kW	= 1.360 PS	g	=	9.80665 m/s ²
1 kW	= 1.341 bhp	Π	=	3.14159
1 bhp	= 1.014 PS	е	=	2.71828
1 oz	= 28.35 g			
1 lb	= 453.59 g	1 lb	=	16 oz
1 short ton	= 907.18 kg	1 short ton	=	2000 lbs
1 lb/bhp	= 447.3 g/PSh	1 ft lb	=	1.356 Nm
1 lb/bhp	= 608.3 g/kWh	1 ft/min	=	0.00508 m/s
1 gal/bhp(US) = 4264 g/kWh	pDiesel	=	0.85 kg/l
1 kWh	= 860 kcal	1 lb/sqin	=	0.069 bar (1 psi)
1 cal	= 4.187 J	1 mm Hg	=	1.333 mbar
				(133.3 Pa)
1 BTU	= 1.055 kJ	1 mm H ₂ 0	=	0.0981 mbar
		-		(9.81 Pa)
1 inch	= 2.540 cm	T (K)	=	t (°C) + 273.15
1 sq. inch	$= 6.542 \text{ cm}^2$	t (°C)	=	5/9 x (t (°F) -32)
1 cu. inch	$= 16.387 \text{ cm}^3$	t (°C)	=	5/4 x t (°R)
1 foot	= 3.048 dm	1 foot	=	12 inches
1 sq. foot	$= 9.290 \text{ dm}^2$	1 yard	=	3 feet
1 mile	= 1.609 km	1 mile	=	5280 feet
1 naut. mile	= 1.853 km	1 naut. mile	=	6080 feet
1 UK Gallon	= 4.546			
1 US Gallon	= 3.785 l			
1 US Barrel	$= 0.159 \text{ m}^3$			
	= 42 US Gallons			

Energy:	1 J = 1 Ws = 1 VAs = 1 Nm
Power:	1 W = 1 VA = 1 Nm/s
Force:	$1 N = 1 kgm/s^2$
Pressure:	$1 \text{ Pa} = 1 \text{ N/m}^2 (1 \text{ bar} = 10^5 \text{ Pa})$
MEP (bar)	$= P_{cyl}(kW) \times 1200$
	$\overline{n(1/\min) \times V_{cyl}(I)}$
Torque (Nm)	= P _{ges} (kW) x 30000
	<u>n(1/min) x п</u>

MTU Friedrichshafen GmbH
MTU Asia Pte Ltd
MTU America Inc.
Rolls-Royce Power Systems Companies
www.mtu-online.com